首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3616篇
  免费   332篇
  国内免费   290篇
化学   1163篇
晶体学   14篇
力学   1360篇
综合类   41篇
数学   292篇
物理学   1368篇
  2024年   3篇
  2023年   60篇
  2022年   90篇
  2021年   149篇
  2020年   115篇
  2019年   92篇
  2018年   91篇
  2017年   156篇
  2016年   182篇
  2015年   165篇
  2014年   205篇
  2013年   263篇
  2012年   140篇
  2011年   270篇
  2010年   168篇
  2009年   276篇
  2008年   249篇
  2007年   216篇
  2006年   206篇
  2005年   172篇
  2004年   119篇
  2003年   127篇
  2002年   82篇
  2001年   76篇
  2000年   83篇
  1999年   83篇
  1998年   72篇
  1997年   48篇
  1996年   50篇
  1995年   42篇
  1994年   25篇
  1993年   36篇
  1992年   22篇
  1991年   26篇
  1990年   16篇
  1989年   15篇
  1988年   8篇
  1987年   9篇
  1986年   3篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   4篇
  1981年   4篇
  1977年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1971年   2篇
  1957年   1篇
排序方式: 共有4238条查询结果,搜索用时 31 毫秒
1.
Zhongyu Shi 《中国物理 B》2022,31(5):54701-054701
The phenomenon of droplet impact on an immiscible liquid is encountered in a variety of scenarios in nature and industrial production. Despite exhaustive research, it is not fully clear how the immiscibility of the liquid on which a droplet impacts affects the crown evolution. The present work experimentally investigates the evolution kinematics of a crown formed by the normal impact of a camellia oil droplet on an immiscible water layer. Based on discussion of dynamic impact behaviors for three critical Weber numbers (We), the radius of the crown and its average spreading velocity are compared with those of previous theoretical models to discuss their applicability to the immiscible liquid. The evolution kinematics (morphology and velocity) are analyzed by considering the effects of the We and layer thickness. Furthermore, the ability of crown expansion in radial and vertical directions is characterized by a velocity ratio. The results show that our experimental crown radius still follows a square-root function of evolution time, which agrees with the theoretical predictions. The dimensionless average spreading velocity decreases with We and follows a multivariate power law, while the dimensionless average rising velocity remains constant. The velocity ratio is shown to linearly increase with We, demonstrating that the rising movement in crown evolution gradually enhances with We. These results are helpful for further investigation on the droplet impact on an immiscible liquid layer.  相似文献   
2.
Liquid-liquid-solid systems are becoming increasingly common in everyday life with many possible applications. Here, we focus on a special case of such liquid-liquid-solid systems, namely, capillary suspensions. These capillary suspensions originate from particles that form a network based on capillary forces and are typically composed of solids in a bulk liquid with an added secondary liquid. The structure of particle networks based on capillary bridges possesses unique properties compared with networks formed via other attractive interactions where these differences are inherently related to the properties of the capillary bridges, such as bridge breaking and coalescence between adjacent bridges. Thus, to tailor the mechanical properties of capillary suspensions to specific requirements, it is important to understand the influences on different length scales ranging from the dynamics of the bridges with varying external stimuli to the often heterogeneous network structure.  相似文献   
3.
Wacker oxidation is an industry-adopted process to transform olefins into value-added epoxides and carbonyls. However, traditional Wacker oxidation involves the use of homogeneous palladium and copper catalysts for the olefin addition and reductive elimination. Here, we demonstrated an ultrahigh loading Cu single atom catalyst(14% Cu, mass fraction) for the palladium-free Wacker oxidation of 4-vinylanisole into the corresponding ketone with N-methylhydroxylamine hydrochloride as an additive under mild conditions. Mechanistic studies by 18O and deuterium isotope labelling revealed a hydrogen shift mechanism in this palladium-free process using N-methylhydroxylamine hydrochloride as the oxygen source. The reaction scope can be further extended to Kucherov oxidation. Our study paves the way to replace noble metal catalysts in the traditional homogeneous processes with single atom catalysts.  相似文献   
4.
Various Higgs factories are proposed to study the Higgs boson precisely and systematically in a model- independent way. In this study, the Particle Flow Network and ParticleNet techniques are used to classify the Higgs decays into multicategories, and the ultimate goal is to realize an "end-to-end" analysis. A Monte Carlo simulation study is performed to demonstrate the feasibility, and the performance looks rather promising. This result could be the basis of a "one-stop" analysis to measure all the branching fractions of the Higgs decays simultaneously.  相似文献   
5.
鉴于纤维增强复合材料(Fiber Reinforced Polymer, FRP)已在混凝土结构加固中普遍应用, 能有效提高结构的承载和变形能力. 为揭示动载作用下FRP-混凝土界面的剥离机理, 本文基于ABAQUS平台, 采用内聚力模型模拟CFRP-混凝土界面层, 实现了快速荷载下CFRP-混凝土界面剥离的高效模拟. 结果表明: CFRP表面应变在加载过程中由加载端向自由端方向传递, 随着加载速率的提高, 界面承载能力也随之提高; 界面峰值剪应力也存在显著的应变率效应; 模拟结果与试验结果基本吻合, 说明了新方法的有效性.  相似文献   
6.
7.
This paper develops a modified smoothed particle hydrodynamics (SPH) method to model the coalescence of colliding non-Newtonian liquid droplets. In the present SPH, a van der Waals (vdW) equation of state is particularly used to represent the gas-to-liquid phase transition similar to that of a real fluid. To remove the unphysical behavior of the particle clustering, also known as tensile instability, an optimized particle shifting technique is implemented in the simulations. To validate the numerical method, the formation of a Newtonian vdW droplet is first tested, and it clearly demonstrates that the tensile instability can be effectively removed. The method is then extended to simulate the head-on binary collision of vdW liquid droplets. Both Newtonian and non-Newtonian fluid flows are considered. The effect of Reynolds number on the coalescence process of droplets is analyzed. It is observed that the time up to the completion of the first oscillation period does not always increase as the Reynolds number increases. Results for the off-center binary collision of non-Newtonian vdW liquid droplets are lastly presented. All the results enrich the simulations of the droplet dynamics and deepen understandings of flow physics. Also, the present SPH is able to model the coalescence of colliding non-Newtonian liquid droplets without tensile instability.  相似文献   
8.
The interactions of bubbles and coal particles in 600 kHz ultrasonic standing waves (USW) field has been investigated. A high-speed camera was employed to record the phenomena occurred under the USW treatment. The formation and behaviors of cavitation bubbles were analyzed. Under the driving of these cavitation bubbles, whose size is from several microns to dozens of microns, coal particles were aggregated and then attracted by large bubbles due to the acoustic radiation forces. The results of USW-assisted flotation show a significant improvement in recoveries at 600 kHz, which indicates that the interactions of bubbles and particles in the USW field are more efficient than that in the conventional gravitational field. Furthermore, the sound pressure distribution of the USW was measured and predicted by a hydrophone. The analysis of gravity and buoyancy, primary and secondary Bjerknes forces shows that bubble-laden particles can be attracted by the rising bubbles under large acoustic forces. This study highlights the potential for USW technology to achieve efficient bubble-particle interactions in flotation.  相似文献   
9.
Instrumented indentation tests using both constant loading rate (CLR) and continuous stiffness measurement (CSM) operation modes were performed to investigate the deformation mechanism and their sensitivity to the deformation rate in semi-crystalline polymers through the quantitative analysis of load-depth loading and unloading curves. The strain rate was constant during the CSM tests, while the strain rate decreased with the increasing of loading time in CLR tests. The mechanical response mechanism of the semi-crystalline polymers to these tests was very complicated because of the combined effects of strain-hardening in the crystal phase and strain-softening in the amorphous phase. Results show that the loading index m reflects the strain-hardening or strain-softening response during indentation. When m > 2, the mechanical response was due to the strain-hardening, and when m < 2, the response was due to strain-softening. A method based on the measured contact hardness was proposed to obtain the unloading stiffness, and the other mechanical parameters could then be determined according to the unloading stiffness.  相似文献   
10.
A new process of leaching zinc oxide dust by ozone oxidation in a sulfuric acid system was studied. The main factors affecting the leaching rate, such as ozone time, leaching temperature, initial acidity, leaching time, and liquid/solid mass ratio, were comprehensively investigated. The results show that leaching efficiency depends on all the above factors. The optimum conditions for leaching Zn and Ge from zinc oxide dust are as follows: ozone time 10 min, leaching temperature 90 ℃, initial acidity 160 g/L, leaching time 60 min, and liquid/solid mass ratio 7:1. Under the optimum conditions, the leaching rates of Zn and Ge are 95.79% and 93.65%, respectively. The leaching rates of zinc and germanium in the ozone leaching are 4.05% and 10.49% higher than those of the atmospheric leaching, respectively. Therefore, it is determined that ozone in solution plays a key role in rapidly oxidizing sulfide and releasing encapsulated germanium. Sulfuric acid-ozone media can efficiently extract Zn and Ge from zinc oxide dust.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号